Synthesis of 2-amino-2,6-dideoxy-D-glucopyranose-6-sulphonic acid

José Fernandez-Bolaños, Inés Maya Castilla. And José Fernandez-Bolaños Guzman Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla and Instituto de la Grasa y sus Derivados, C.S.I.C., Sevilla (Spain)

(Received March 28th, 1985; accepted for publication, September 11th, 1985)

A 2-amino-2,3-dideoxyhexose-3-sulphonic acid has been identified in hydrolysates of sulphite-treated glycoproteins^{1,2} and a 2-amino-2,6-dideoxyhexose-6-sulphonic acid has been found³ in cell-wall hydrolysates of *Halococcus* sp., strain 24, although the configuration of neither compound has been established. We now report the synthesis of 2-amino-2,6-dideoxy-D-glucopyranose-6-sulphonic acid (2) as part of a programme on the synthesis of anionic surfactants from sugars⁴.

Oxidation of 2-acetamido-1,3,4-tri-O-acetyl-6-S-acetyl-2-deoxy-6-thio- β -D-glucopyranose⁵ (1) with 30% hydrogen peroxide in acetic acid⁶ gave a mixture of 2 and its 3,4-diacetate 3. Deacetylation of 3 gave 2. The structures and the ${}^4C_1(D)$ conformations of 2 and 3 were indicated by 1H -n.m.r. data (Table I), and the structure of 2 was proved by an X-ray crystallography study⁷.

The ¹H-n.m.r. data for **2** showed that, at equilibrium in D_2O , the α,β -ratio was 68:32; furanose forms were not detected. D-Glucose⁸ and 2-amino-2-deoxy-D-glucose⁹ show an α,β -ratio of 36:64, whereas that for 2-amino-2-deoxy-D-glucose hydrochloride⁹ is 63:37 because the anomeric effect is accentuated by amino protonation^{9,10}. Therefore, the amino group of **2** is protonated in solution.

Three staggered rotamers (gg, gt, and tg) are possible¹¹ about the C-5–C-6 bond in **2**, and the $J_{5,6}$ and $J_{5,6}$ values indicate^{12–14} that the preferred conformation is gt (**4**) as found for the hydroxymethyl group of hexopyranoses in aqueous solutions¹⁵. The relative shift positions of the signals for H-6 and H-6' accord with the *syn*-upfield rule¹³.

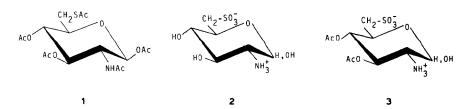


TABLE I

H-N M.R. DATA" FOR Z AND 3 IN DEUTERIUM OXIDE	L DALA" FOR 2	S AND G IN E	SELTERIUM C	VIDE			as as assumentation			1		and the second s		-	
Compound H-1 H-2	I-H	Ĩ-H	Н-3	t-H	H-5	9-H	,9-H	OAC	$J_{I,2}$	J _{2,3}	J 1,4	J4 5	J _{s,n}	J _{5,6} .	J _{6,6} '
α-2	5 41d	3.31dd	4	3.35dd	4.27td	3 41dd	3 41dd 3 09dd	3.6 10.5	3.6	10.5	∞.∞	7 6	- X	96	8.8 97 18 96 -149
8-2	7 95d	3 03dd	3 68dd	3 36dd	3 83td	3.41dd	3 10dd		*	10.5	×.×	9.5	8	6.4	6,4 -149
α-3	5 50d		5 48dd	4 99dd	4 60td	←3 I	+m+	2 12%	3.6	10.7	0.6	9.0	J	1	1
β-3	5 ()8d	3 44dd	5 38dd	5 (10dd	p16I †	-2-	←3 14m →	2.11s 2.12s	*	84 107	0 6	0.6	1	***************************************	1
								2.118							

"Assignments were confirmed by spin-decoupling experiments

NOTE 327

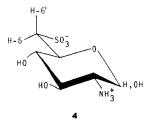


TABLE II

13C-N M R DATA FOR 2 AND 3 IN DEUTERIUM OXIDE⁴

Compound	C-I	C-2	C-3	C-4	C-5	C-6	СО	CH_3
α-2	89.9	55.0	70.3	73.3	68.7	52.8	*****	_
β-2	93.6	57.4	72.6	73.3	73.3	52.8		_
α-3	89.8	52.9	70.9	72.1	66.1	52.2	174.0 173.7	21.0
β-3	93.5	55.3	72.1	72.1	70.8	52.4	174.0 173.7	21.0

^aInternal 1,4-dioxane (δ 67.4).

The α,β -ratio for 3, in deuterium oxide solution, was 76:24 and the 3,4-positions of the OAc groups are supported by an increase of \sim 1.6 p.p.m. in the values of the chemical shifts of the signals for H-3 and H-4 relative to the values observed for 2.

The 13 C-n.m.r. data for **2** and **3** are shown in Table II, and the assignments were based on selective proton decoupling. The data resemble those for 2-amino-2-deoxy-D-glucose hydrochloride 16,17 , except that replacement of HO-6 by a sulphonic acid group causes upfield shifts of \sim 9 and \sim 4 p.p.m., respectively, in the signals for C-6 and C-5, and a downfield shift of \sim 3 p.p.m. in the signal for C-4.

The mobility of **2** in paper chromatography (see Experimental) was quite different from that reported³ for the naturally occurring 2-amino-2,6-dideoxyhexose-6-sulphonic acid.

EXPERIMENTAL

General. — Melting points are uncorrected. I.r. spectra were recorded for KBr discs with a Perkin–Elmer 299 spectrophotometer. 1 H-N.m.r. spectra (200 MHz) were recorded with a Varian XL-200 spectrometer at 20° (internal sodium 4,4-dimethyl-4-silapentane-1-sulphonate). The coupling constants were measured directly from the spectra. 13 C-N.m.r. spectra (50.2 MHz) were recorded with a Varian XL-200 spectrometer (internal 1,4-dioxane: δ 67.4). Optical rotations were measured immediately and after 20 h at room temperature. An automatic amino

328 NOTE

acid analyser was used with a column (31 \times 1 cm) of Aminex A-9 (BioRad Laboratories) at 60° with citrate buffer (pH 6.40) and an o-phthalaldehyde system¹⁸ for detection. P.c. (horizontal) was performed at 20° on Whatman No. 1 paper with A, 1-butanol-pyridine-water (1:1:1), and p.c. (descending) with B, 1-pentanol-pyridine-water (7:7:6), and C, ethyl acetate-pyridine-water-acetic acid (5:5:3:1). Alkaline silver nitrate and ninhydrin were used for detection.

2-Amino-2,6-dideoxy-D-glucopyranose-6-sulphonic acid (2) and 3,4-di-O-acetyl-2-amino-2,6-dideoxy-D-glucopyranose-6-sulphonic acid (3). — To a solution of 1 (2 g, 4 mmol) in acetic acid (10 mL) was added aqueous 30% hydrogen peroxide (3.6 mL, 36 mmol). The mixture was kept at 80° for 1 h (white precipitate), and then cooled to room temperature. The precipitate (fraction A, 0.35 g) was collected and the filtrate was concentrated at 0.1mm Hg to give fraction B (1.23 g).

Fraction A was recrystallised from aqueous methanol to give 3 (0.34 g, 20%), m.p. ~270° (dec.), $[\alpha]_D^{26}$ +117° (c 1, water), R_F 0.56 (solvent A); ν_{max} 1735 (C=O), 1615 and 1520 (NH $_3^+$), 1240 (C-O-C), 1210 and 1150 cm $^{-1}$ (SO $_3^-$).

Anal. Calc. for $C_{10}H_{17}NO_9S$: C, 36.69; H, 5.23; N, 4.27; S, 9.79. Found: C, 36.84; H, 5.28; N, 4.37; S, 10.00.

A solution of fraction B (1.23 g) in water (30 mL) was stirred and boiled with Amberlite IR-120 (H⁺) resin (14 g) for ~6 h, then filtered, and concentrated, and the residue was crystallised from aqueous methanol to yield **2** (0.37 g, 31%), m.p. ~250° (dec.), $[\alpha]_D^{2^2} + 85 \rightarrow +73^\circ$ (c 1, water), R_F 0.40 (solvent A), R_{GleN} 0.36 (solvent B) and 0.65 (solvent C) [cf. R_{GleN} 0.49 (solvent B) and 0.47 (solvent C) reported³ for 2-amino-2,6-dideoxyhexose-6-sulphonic acid]; mobility (relative to that of GlcN) in the amino acid analyser, 2.3; ν_{max} 1610 and 1520 (NH $_3^+$), 1210 and 1150 cm $_3^{-1}$ (SO $_3^-$).

Anal. Calc. for $C_6H_{13}NO_7S$: C, 29.62; H, 5.38; N, 5.75; S, 13.18. Found: C, 29.33; H, 5.50; N, 5.71; S, 12.75.

Treatment of 3 (0.34 g) with Amberlite IR-120 (H⁺) resin (4 g), using the above procedure, gave 2 (0.21 g, 80%).

ACKNOWLEDGMENTS

We thank the Instituto de Química Orgánica General, C.S.I.C. (Madrid) for the microanalyses, Dr. J. L. Navarro of the Instituto de la Grasa y sus Derivados, C.S.I.C. (Sevilla) for the data from the amino acid analyser, and the Asociación de la Industria de Detergentes (Barcelona) for a grant.

REFERENCES

- 1 P. Weber and R. J. Winzler, Arch. Biochem. Biophys., 137 (1970) 421-427.
- 2 A S B EDGE AND P. WEBER, Carbohydr. Res., 126 (1984) 279-285, and references therein.
- 3 R. REISTAD, Carbohydr. Res., 54 (1977) 308-310.
- 4 I. MAYA CASTILLA, Ph.D. Thesis, Universidad de Sevilla, 1984

NOTE 329

- 5 W. MEYER ZU RECKENDORF AND W. A. BONNER, J. Org. Chem., 26 (1961) 5241-5242.
- 6 J. S. SHOWELL, J. R. RUSSEL, AND D. J. SWERN, J. Org. Chem., 27 (1962) 2853-2858.
- 7 A. LOPEZ-CASTRO, R. VEGA, AND R. MARQUEZ, Abstr. Pap. Congreso Real Soc. Españ. Fís. Quím., 20th, Castellón, Spain, 1984.
- 8 D. HORTON, J. S. JEWELL, AND K. D. PHILLIPS, J. Org. Chem., 31 (1966) 4022-4025.
- 9 A. NEUBERGER AND A. P. FLETCHER, J. Chem. Soc., B, (1969) 178-181.
- 10 S. J. ANGYAL, Adv. Carbohydr. Chem. Biochem., 42 (1984) 15-68.
- 11 J. BOYD, R. PORTEOUS, N. SOFFE, AND M. DELEPIERRE, Carbohydr. Res., 139 (1985) 35-46.
- 12 D. G. STREEFKERK, M. J. A. DE BIE, AND J. F. G. VLIEGENTHART, *Carbohydr. Res.*, 33 (1974) 339–349.
- 13 A. DE BRUYN AND M. ANTEUNIS, Carbohydr. Res., 47 (1976) 311-314.
- 14 S. J. PERKIN, N. L. JOHNSON, AND D. C. PHILLIPS, Carbohydr. Res., 59 (1977) 19-34.
- 15 D. A. REES AND D. THOM, J. Chem. Soc., Perkin Trans. 2, (1977) 191-201.
- 16 K. BOCK AND C. PEDERSEN, J. Chem. Soc., Perkin Trans. 2, (1974) 293-297.
- 17 T. E. WALKER AND R. BARKER, Carbohydr. Res., 64 (1978) 266-270.
- 18 J. R. BENSON AND P. E. HARE, Proc. Natl. Acad. Sci. U.S.A., 72 (1975) 619-622.